Global Nonexistence for a Nonlinear Viscoelastic Equation with Nonlinear Damping and Velocity-Dependent Material Density
نویسندگان
چکیده
منابع مشابه
Asymptotic behavior for a nonlinear viscoelastic problem with a velocity-dependent material density
where Ω is a bounded domain in Rn, n≥ 1, with a smooth boundary Γ. The real number ρ is assumed to satisfy 0 < ρ ≤ 2/(n− 2) if n ≥ 3 or ρ > 0 if n= 1,2. The function g(t) is positive and will be specified further below. This model appears in viscoelasticity. We are in the case where the material density depends on ut (see [5, 11]). In [1], Cavalcanti et al. studied this nonlinear problem (ρ > 0...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Global Existence and Nonexistence for Nonlinear Wave Equations with Damping and Source Terms
We consider an initial-boundary value problem for a nonlinear wave equation in one space dimension. The nonlinearity features the damping term |u|m−1 ut and a source term of the form |u|p−1 u, with m, p > 1. We show that whenever m ≥ p, then local weak solutions are global. On the other hand, we prove that whenever p > m and the initial energy is negative, then local weak solutions cannot be gl...
متن کاملGlobal Nonexistence of the Solutions for a Nonlinear Wave Equation with the Q-laplacian
We study the global nonexistence of the solutions of the nonlinear qLaplacian wave equation utt −∆qu + (−∆)ut = |u|p−2u, where 0 < α ≤ 1, 2 ≤ q < p. We obtain that the solution blows up in finite time if the initial energy is negative. Meanwhile, we also get the solution blows up in finite time with suitable positive initial energy under some conditions.
متن کاملNonlinear Beam Equation with Indefinite Damping
We consider the nonlinear beam equation utt + a(x)ut − f(ux)x + uxxxx = 0 in a bounded interval (0, 1) ⊂ R. The equation has an indefinite damping term, i.e., with a damping function a = a(x) possibly changing sign. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system provided ā = ∫ 1 0 a(x)dx > 0 and ‖ a− ā ‖L2≤ τ , for τ small enough. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2019
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2019/8306790